akuklev: (Default)
[personal profile] akuklev
Продолжая предыдущий пост.
Но человеческое любопытство безгранично. Следующим вопросом, который я задал Клокову был следующий: Вот функцию, обратную данной часто обозначают f-1(x). Это же наверняка не зря! Пусть f -- непрерывная монотонно возрастающая функция с совпадающей областью определения и обастью значений. Тогда у неё есть обратная, и тогда её можно соединять саму с собой. Пусть тогда f°(x) = x, f¹(x) = f(x), f²(x) = f(f(x)), fn(x) = f(fn-1(x)). Для отрицательных -- соответственно. Тогда выполняется соотношение fa∘fb = fa+b. Будем из него исходить. Вопрос: можно ли как-нибудь осмысленно продолжить понятие композиционной степени для рациональных и далее по непрерывности для действительных чисел.

Для примера мы взяли функцию f(x) = x². Тогда можно подобрать к ней f1/2(x) = x√2. Функция
f1/3(x) = x21/3. Несложно проверить и доказать, что для f(x) = xa:
fu(x) = xau

(Обращаю внимание, что единственность рациональных степеней композиции ещё нигде не утверждалась)

Дома я рассмотрел ещё пару примеров.
Например g(x) = kx. Тогда для натуральных n: gn(x) = knx. Несложно проверить, что это подходит вообще для всех действительных g. Проверим, обладает ли наша степень другим хорошим свойством. Пусть h(x) := (kx)a = f∘g.
Если hu = fu ∘ gu, это было бы просто здорово.
Итак, по нашему предположению, hu = (kux)au.
Проверим, что у нас получается для h(x) = (5x)³; u = 1/2.
h1/2 = ([√k]x)√a.

Скомбинируем эту штуку с самой собой:
h = ( [√k] ([√k] x)√a )√a
= ( [√k]1/√a [√k] x )a
= ( [√k](1 + 1/√a) x )a

Хрена, даже две такие простые функции между собой и не думают коммутировать! А вы думали, в рай попали? :-)

Но это не повод для печали. Будем думать дальше. Вот есть, например, производная (хрен ли нам! мы же играем, добавим в условие дифференцируемость) сложной функции:
(f ∘ g)' = g' * (f' ∘ g)

(f)' = g' * (g' ∘ g)

Если мы сюда подставим одну и ту же ф-цию, получится:
(f²)' = f' * (f' ∘ f)

А ещё разок:
(f ∘ f²)' = (f²)' * (f' ∘ f²)
(f³)' = f' * (f' ∘ f) * (f' ∘ f²)

«Доктор Борменталь, умоляю вас: мгновенно эту штучку, и если вы скажете, что это плохо, я ваш кровный враг на всю жизнь.»
Предположим, наша функция хоть где-то пересекается с диагональю x = y, то есть имеет фиксированный пункт a = f(a). Значит, этом самом фикспункте с производной творится чудесная вещь:
(fn)'(x) = (f'(x))n

А ведь может быть, подобная вещь творится и со второй производной? Посчитаем вторую производную сложной функции:
(f ∘ g)'' = [g']² f'' ∘ g + (f' ∘ g) * g''

Страшненько. Подставим что нам нужно.
(f²)'' = [f']² f'' ∘ f + (f' ∘ f) * f''

Вспомним, что у нас всё происходит в фикспункте.
(f²)'' = [f']² f'' + f' * f'' = ([f']² + f')f''

Для третьей степени соответственно:
(f³)'' = [f']4 f'' + (f') * (f²)'' = [f']4 f'' + (f') * ([f']² + f')f''
= ([f']4 + [f']³ + [f']²)f''

Формулка, конечно, вырисовывается страшненькая, но она вырисовывается. То есть, зная функцию f, её фикспункт и все её производные в этом фикспункте, можно посчитать все производные функции fa. Если бы нам удалось доказать, что если f аналитическая функция, то и fa тоже аналитическая, то эту самую fa мы можем полность определить.

Такие вот соображения. Дальше я в мыслях за пять с половиной лет, что прошли с тех пор, совершенно не продвинулся. (Честно говоря, я за эти пять лет ни разу про эту фиговину и не вспоминал даже.) Уважаемые читатели, а может быть кто-нибудь ткнёт меня мордой, в какой книжке по этому вопросу почитать можно? Ведь наверняка же товарищ Эйлер и подобные ему другие товарищи этим вопросом занимались. Уж больно он близок к расширению, например, факториала на всю действительную ось.
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

December 2016

S M T W T F S
    123
456789 10
11121314151617
18192021222324
25262728293031

Style Credit

Expand Cut Tags

No cut tags
Page generated Dec. 24th, 2025 02:38 am
Powered by Dreamwidth Studios